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 In the following appendix sections we provide more detailed discussions of some of the 
topics discussed in Chapters 2, 3, 5 and 9.  In particular, Section D-1 provides additional notes 
on dual and multi-frame samples and inference for these samples.  Section D-2 provides further 
details of the qualified Centers utilized in the family of designs and presents one example of 
sampling qualified Centers.  Section D-3 provides further details of the sample selection for the 
family of designs described in Chapters 3 and 5.  Sections D-4 and D-5 discuss the calculation of 
design effects for the estimation of population means and the estimation of exposure/outcome 
relationships, respectively (note that the results of D-5 on design effects for relationships are 
preliminary and may undergo revision).  Section D-6 provides several detailed figures presenting 
the power to detect relationships of interest for a simple random sample, and Section D-7 
discusses further details of the methods for simulating correlated binary data and calculating 
power via simulation. 
   
 
D-1 INFERENCE FOR DUAL AND MULTI-FRAME SAMPLES 
 

As discussed in Chapter 2 of this report, dual- and multi-frame samples have a long 
history, going back to Hartley (1962) who noted that such designs can result in considerable cost 
savings over a single-frame design with similar precision.  The general idea is that by drawing a 
study population using a combination of several different sampling frames, one can benefit from 
the advantages while minimizing disadvantages associated with each individual frame.  Lohr and 
Rao (2000) provide some excellent examples of how dual-frame sampling might work.  For 
example, a sample of individuals with Alzheimer’s disease might be constructed by drawing 
some individuals from the general population (in order to ensure representativeness) and drawing 
others from senior care facilities (in order to reduce costs by sampling from a high prevalence 
population).  They cite this Alzheimer’s example as an illustration of the general principle of 
generating a sample of individuals with a rare disease by augmenting a population-based sample 
with one drawn from a high prevalence, yet incomplete population.  Lohr and Rao also describe 
an example of particular relevance to the National Children’s Study, namely Canada’s National 
Longitudinal Survey of Children and Youth which was based on three different sampling frames.   
Two of the frames correspond to one used for the Labour Force Survey, before and after a 
redesign in 1995, while the third frame is the one used by the National Population Health Survey.   

 
For the NCS, it is anticipated that a dual- or multi-frame sampling strategy would 

combine a broad probability-based population-wide sample (call this frame A) with a sample 
based on a Center-based recruitment strategy (e.g., recruitment through university-based medical 
Centers).  For ease of discussion, call the latter frame B.  By incorporating a sampling strategy 
based on frame A, the NCS will have a greater chance of being truly representative of the entire 
United States.  For instance, such a sample will ensure appropriate representation of low-income 
subjects or subjects from minority ethnicities.  However, the downside is that some of the 
subjects sampled from frame A might be more likely to refuse to participate in the study, or 
might be more difficult to retain (i.e., being more likely to drop out before study completion).   A 
careful choice of frame B can potentially identify a more compliant population (lower refusal 
rates, easier tracking, greater cooperation with follow-up appointments, etc.).   For example, 
study subjects recruited through a university-based medical Center already have built-in 
alternative tracking and contact mechanisms, as well as incentives to maintain contact with study 



Developed for Discussion D-4  
at the Sample Design Workshop  March 19, 2004 

staff as part of receiving ongoing care for their child.  While the use of dual-frame sampling is 
appealing from a heuristic perspective in terms of enhancing study validity, statistical analysis of 
data collected in such a manner poses considerable challenges.  The purpose of this discussion is 
to present an overview of the various possible approaches to inference for dual- and multi-frame 
samples and to make some recommendations regarding the approach to be taken for the NCS.   
 

In actuality, frame A is likely to be reasonably complex in itself, for example, involving 
clustering at the county or possibly census tract level, as well as stratification with respect to 
ethnicity, socioeconomic status, and other factors.   In addition, sampling may be done in a 
multi-stage (or multi-phase) manner, for example, oversampling of cases for the purpose of 
measuring certain expensive or difficult to measure covariates.  For the purpose of discussion, 
however, we begin with the assumption that sampling frames A and B are relatively simple.   
 

In the more standard single-frame setting, a great deal has been written on the topic of 
model-based versus design-based statistical inference.  Good reviews on the topic can be found 
in Rao (1999), as well as in the introductory chapters of Chambers and Skinner (2000).  In brief, 
model-based approaches involve making distributional assumptions regarding the joint 
distribution of sampling indicators and observed data, while design-based approaches generally 
use more robust approaches based on weighted estimating equations.  Chapter 1 of Chambers 
and Skinner provides a particularly lucid discussion which we describe briefly here for the 
purpose of framing our later discussion.   Let yi represent the value associated with the ith 
member of some population of interest, denoted by U.  Suppose we wish to take a sample of size 
N from this population and that our goal is to estimate some characteristic of this population, for 
example, the population mean,   
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Let πi be the probability that subject i is selected for sampling, let δi be an indicator of whether 
(δi =1) or not (δi =0) this same individual was actually selected and let {i : i ε S} represent the set 
of N sampled individuals.  As discussed by Chambers and Skinner, inference needs to consider 
the distribution of the sampling indicators themselves, as well as the actual sampled data.  
Although there are other approaches (e.g., Bayesian methods), most common methods are 
divided into two broad classes, namely design-based and model-based.  The design-based 
approach is often described as focusing on the randomness of the sampling indicators, treating 
the population values, Y1,…YN, as fixed quantities.  Estimators derived under a design-based 
approach are often found to be equivalent to the solutions to weighted estimating equations, with 
weights that reflect the sampling probabilities.   For example, a design-based approach to 
estimating the population mean based on data observed in the sample can be found by solving 
the following equation: 
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where y1,….yn represent the observed values for the sampled subjects (i.e., those with δi =1), and 
wi is the inverse of the sampling probability, πi=Pr(δi =1).  Chapter 6 of Chambers and Skinner 
provides an excellent discussion of the link between familiar design-based estimators that 
combine strata-specific summary statistics with analysis based on unit level data, which will 
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generally involve solving estimating equations.  An advantage of formulating at the unit level is 
that additional covariates are relatively easy to incorporate as well. 
 

Model-based approaches involve making distributional assumptions on the Yi’s as well.  
While classical model-based inference tends to ignore the distribution of the sampling indicators, 
inference based on such an approach can lead to bias unless the sampling indicators are 
ignorable.  A correct model-based approach should consider the joint distribution of the (δi ,Yi) 
pairs.  In addition, a full model-based approach will consider the distribution of associated 
“design variables,” which will generally correspond to individual characteristics (such as age, 
gender, ethnicity, SES, etc.) that might be used in specifying the design itself or which might 
affect the distribution of the outcomes of interest.  The full joint distribution can be factored as 
follows:  

 
f(Yi,Zi,δi) =  f(δi|Yi,,Zi)f(Yi|,Zi) f(Zi).    (D-3) 

 
Since Yi and Zi can be observed only if δi =1 (i.e., the subject is actually sampled), the observed 
data likelihood will involve integrating over the distribution of these random variables.  In some 
cases (e.g., when the selection probabilities do not depend on the unobserved data) the sampling 
mechanism is said to be ignorable and relatively standard methods can be applied.  More 
generally, it will be necessary to consider the sampling mechanism as part of the likelihood 
construction in order to assure valid inference on the parameters of interest.  While it can be 
argued that a model-based approach might gain in statistical efficiency when the modeling 
assumptions are correct, the downside to such an approach is that it can lead to bias if the 
distributional assumptions are wrong.  Rao (1998) provides a good discussion on this topic and 
explains that for this reason, many researchers prefer a design-based approach.   In particular, 
Rao explains that the weighted estimating equation above will still lead to valid inference, even 
if the distributional assumptions on the population data are incorrect.  Use of the weighted 
estimating equation approach is in fact quite consistent with the increasing popularity among 
statisticians of generalized estimating equations as an alternative to likelihood-based inference.   
 

Lohr and Rao (2000) discuss extensions of design-based estimators to the dual-frame 
setting.  To do so requires extending notation to reflect the existence of two different frames.  
For example, we need to specify two sets of sampling probabilities, A

iπ  being the probability of 
being sampled into frame A and B

iπ  being the probability of being sampled into frame B.  Let 
A
iw  and B

iw  be the inverse of these sampling probabilities.  Similarly, we need notation for two 
different sampled populations, SA referring to those sampled from frame A and SB those sampled 
from frame B.  Lohr and Rao consider that the population of interest (U) can be divided into 
three mutually exclusive domains, a=A∩Bc reflecting members of the population who are in 
frame A but not frame B, b=Ac∩B or those who are in frame B but not frame A and ab=A∩B or 
those who are in both frames.  Lohr and Rao go on to describe a variety of different estimators 
that combine estimates corresponding to the three domains a, b, and ab.   The estimates and 
inference based on them differ according to whether or not the sizes of the various domains can 
be assumed known.  We describe here the relatively simple case where these are known and 
equal to Na, Nb and Nab, respectively.  Defining the domain specific estimators as follows,   
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Lohr and Rao describe various proposals for estimating the population mean using combinations 
of these four estimates.   A particularly appealing approach is one that estimates population 
parameters of interest by treating all observations as though they were drawn from the same 
frame, but using modified weights for observations that fall into the intersection (Lohr and Rao 
cite papers by Bankier, 1986, Kalton and Anderson, 1986 and Skinner, 1991).   An additional 
advantage of this approach is that it lends itself to formulating estimators based on unit level data 
(see Chapter 6 of Chambers and Skinner).  Defining 1/ A

i iw π=  for subjects in frame a, 
1/ B

i iw π=  for subjects in frame b, and 1/( )A B
i i iw π π= +  for subjects in ab, it follows that a 

simple but valid design-based estimator is given by the solution to the following equation: 
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Note that there is no requirement here to identify individuals who happen to appear in both 
samples.  Of course in practice when sampling from large populations, it is unlikely that there 
would be many such individuals.   A particularly appealing aspect of this formulation is that it 
can be easily generalized to handle covariates.  Such models have not been extensively explored 
in the statistical literature at this time, and represent a promising avenue for future research 
relevant to the NCS. 
 
 
D-2 SAMPLING OF QUALIFIED CENTERS 
 

As described in Chapter 5 of this report, Centers capable of performing the tasks 
associated with the NCS would likely be selected through a competitive procurement process, in 
which the Centers would demonstrate their ability and capacity to perform appropriate data 
collection activities.  Since this formal process is not available at this stage, a surrogate list that 
includes 105 medical research institutions with affiliated hospitals and their total dollar amount 
of National Institutes of Health (NIH) research grants (averaged over 2001 and 2002) was 
obtained from U.S. News and World Report.  Table D-1 displays these 105 Centers along with 
their amount of NIH funding in millions of dollars, and Figure 5-1 in Chapter 5 illustrates the 
distribution of these Centers across the U.S. (one of the institutions is in Puerto Rico and is not 
displayed in Figure 5-1).   
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It should be noted that this list includes only research centers that have had NIH grant 
funding, so that some large medical Centers not affiliated with a university, such as the 
Cleveland Clinic, and some research universities not affiliated with particular hospitals, like the 
University of California, Berkeley are excluded from the list.  This is not meant to suggest that 
we are implicitly assuming that these respected institutions would be excluded from participating 
in the NCS.  However, as a starting point for understanding the portion of the population that 
might be within the geographical area of a Center, this list, although not a comprehensive 
enumeration of every institution that might compete to participate in the NCS, was utilized.  
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Table D-1. Table of 105 Centers and their average 2001-2002 NIH research funding (in millions of $) 

Centers 
Grant 

Funding Centers 
Grant 

Funding Centers 
Grant 

Funding 
Harvard University (MA) 957.8 Mayo Medical School (MN) 126.4 University of Louisville 29.2 
University of Washington 431.5 University of Minnesota–Twin Cities 124.9 Medical College of Georgia 25.8 
University of Pennsylvania 431.4 University of Rochester (NY) 118.4 New York Medical College 22.1 
Baylor College of Medicine (TX) 382.8 University of Virginia 108.6 University of Nebraska College of Medicine 22 
Johns Hopkins University (MD) 372.6 University of Maryland 108.5 Uniformed Services Univ. of the Health Sciences 17.8 
University of California–San Francisco 368.7 Wake Forest University (NC) 95.9 Drexel University 16.6 
University of California–Los Angeles (Geffen) 340.5 University at Buffalo (NY) 91.2 University of North Dakota 14.5 
Washington University in St. Louis 320.4 Indiana University–Indianapolis 90.6 Medical College of Ohio 11.9 
Columbia U. College of Phys. and Surgeons (NY) 260.5 University of Miami (FL) 90.1 University of Mississippi 11.6 
University of Michigan–Ann Arbor 255.7 University of Massachusetts–Worcester 88.1 University of Missouri--Columbia 10.9 
University of Pittsburgh 247.8 Brown University (RI) 86.4 West Virginia University 10.3 
Yale University (CT) 245.4 Tufts University (MA) 83.3 Texas A&M Univ. System Health Science Center 9.9 
Cornell University (Weill) (NY) 227 Dartmouth Medical School (NH) 80.2 Michigan State University 9.8 
Duke University (NC) 225 Jefferson Medical College (PA) 76.3 Wright State University 8.2 
Stanford University (CA) 198.4 University of Utah 72.1 Michigan State Univ. College of Osteopathic Med. 8 
University of California–San Diego 195.7 University of Florida 71.8 Creighton University 7.9 
University of Alabama–Birmingham 195.7 Medical College of Wisconsin 69.4 University of South Dakota 7.1 
Vanderbilt University (TN) 180.2 Georgetown University (DC) 64.2 Ponce School of Medicine 6.6 

Case Western Reserve University (OH) 177.5 Univ. of Texas Health Science Center–Houston 59.5 
U. of North Texas Health Sci. Center (Texas Col. of 
Osteopathic Medicine) 6.3 

University of North Carolina–Chapel Hill 162.1 Stony Brook University 59.4 University of South Carolina 5.4 
Yeshiva University (Albert Einstein) (NY) 157.7 Medical University of South Carolina 59 Eastern Virginia Medical School 5 
Boston University 155.9 Va. Commonwealth U.–Medical Col. of Va. 55.5 Texas Tech University Health Sciences Center 4.9 
University of Southern California 148.9 Wayne State University (MI) 50.4 UMDNJ--School of Osteopathic Medicine 4.1 
U. of Texas Southwestern Med. Center–Dallas 148.8 University of Vermont 49.4 East Tennessee State University (J.H. Quillen) 3.2 
Oregon Health & Science University 146.3 UMDNJ-Robert Wood Johnson Medical School 49.4 Southern Illinois University--Springfield 2.7 
University of Cincinnati 145.8 University of California–Davis 47.3 Mercer University 2.2 
Univ. of Colorado Health Sciences Center 143 UMDNJ-New Jersey Medical School 40.3 Northeastern Ohio Universities College of Medicine 1.9 
Northwestern University (Feinberg) (IL) 141.1 University of New Mexico 38.1 University of Minnesota--Duluth 1 
Univ. of Iowa (Roy J. & Lucille A. Carver) 136.5 Tulane University (LA) 37.4 Ohio University College of Osteopathic Medicine 0.9 
Emory University (GA) 134.5 University of Kansas Medical Center 36.8 Univ. of New England College of Osteopathic Med. 0.7 
University of Wisconsin–Madison 133.3 University of California–Irvine 35.9 Chicago College of Osteopathic Medicine 0.6 
Ohio State University 133.3 George Washington University (DC) 32.9 Kirksville College of Osteopathic Medicine 0.4 
Mount Sinai School of Medicine (NY) 132.3 University of Oklahoma 31.6 Philadelphia College of Osteopathic Medicine 0.3 
New York University 128 University of South Florida 30.1 Oklahoma State Univ. College of Osteopathic Med. 0.3 
University of Chicago 126.4 St. Louis University 29.9 Arizona College of Osteopathic Medicine 0.1 
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As displayed in the table, for each of these 105 Centers the total dollar amount of NIH 

research grants awarded to the medical school and its affiliated hospitals (averaged over 2001 
and 2002) was available.  In addition to these data, Census data were merged with the list of 
Centers to provide counts of the total population, the population of children 0 to 3 years of age, 
the population of females of childbearing age, and the total number of households in the 
respective counties and metropolitan statistical areas (MSAs) where the Centers are located.  
Finally, data on the annual number of births at each Center were obtained directly from each 
Center for all but 34 of the Centers.  For example, Figure D-1 displays a map of the 105 Centers 
along with the number of children between the ages of zero and three years for their 
corresponding counties.   
 

 
 
Figure D-1.  Map of U.S. Indicating Locations of All the 105 Centers With County Population of 

Children 0 to 3 Years Old. 
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As mentioned in Chapter 5, several methods for selecting Centers from the list of Centers 
were considered.  Probabilistic approaches included probability proportional to size (PPS) 
sampling from the list of Centers, with size defined by 1) total amount of NIH funding, 2) 
number of households or children aged 0 to 3 years in the geographical area, and 3) number of 
births annually at the Center.  Here we demonstrate some of the results of applying a PPS 
sampling approach where the size of the Center is defined as their total amount of NIH funding.  
For example, Table D-2 displays the number of children between the ages of zero and three (i.e., 
representing the number of births in the county for a four-year recruitment period) as a function 
of the number of Centers and the proportion of the population that is selected in each of the 
counties corresponding to the selected Centers.  Note that to achieve at least 100,000 children, at 
least 6 to 7 percent of the children would need to be selected in each of the counties and up to 50 
Centers would need to be selected.  Thus, Figure D-2 displays a realization of the counties that 
are selected if PPS sampling of 50 Centers is conducted.  (Note that some of the Centers end up 
being selected with certainty since their relative size exceeds the inverse of the Centers sample 
size.)  These are denoted as certainty counties in the figure, and all other counties are denoted as 
uncertainty counties. 

 
Table D-2.  Total number of children aged 0 to 3 sampled from counties where medical 

research centers are located.  
 

Percent of Sampled Population from Counties (Average over 20 Trials) Number 
of 

Centers 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 

30 16,947 27,218 36,228 44,759 52,801 60,410 67,138 72,925 77,865 81,764 
31 18,653 29,809 39,113 47,832 56,048 63,852 70,735 76,579 81,540 85,412 
32 18,126 29,386 38,879 47,868 56,386 64,460 71,687 77,909 83,230 87,264 
33 18,674 30,314 40,271 49,529 58,303 66,653 74,107 80,579 86,124 90,339 
34 18,998 31,266 41,599 51,292 60,494 69,302 77,222 84,078 89,961 94,568 
35 19,247 31,324 41,886 51,808 61,197 70,139 78,203 85,166 91,069 95,562 
36 20,342 33,218 44,327 54,674 64,319 73,354 81,434 88,471 94,441 99,022 
37 20,853 33,902 45,354 56,102 66,131 75,576 84,075 91,448 97,665 102,399 
38 20,821 34,376 46,164 57,034 67,150 76,680 85,177 92,621 98,910 103,782 
39 22,062 36,173 47,759 58,609 68,762 78,391 87,030 94,552 100,966 105,861 
40 22,938 37,756 50,134 61,613 72,205 82,108 91,014 98,908 105,629 110,810 
41 22,683 37,373 49,959 61,593 72,423 82,569 91,715 99,792 106,753 112,143 
42 23,491 38,262 50,593 62,134 72,956 83,179 92,407 100,484 107,346 112,607 
43 24,478 40,310 53,365 65,521 76,752 87,214 96,690 105,018 112,151 117,752 
44 24,905 40,764 53,846 65,975 77,353 88,166 97,954 106,519 113,774 119,377 
45 23,883 39,951 53,327 65,858 77,562 88,617 98,661 107,556 115,101 120,976 
46 25,262 41,477 54,916 67,672 79,708 91,161 101,643 111,049 119,018 125,125 
47 26,119 43,160 57,340 70,568 82,861 94,384 104,927 114,345 122,377 128,578 
48 26,348 43,555 57,732 71,011 83,458 95,212 105,960 115,583 123,790 130,227 
49 26,952 44,699 59,248 72,845 85,543 97,483 108,423 118,142 126,421 132,915 
50 27,378 45,550 60,525 74,332 87,186 99,246 110,280 120,092 128,458 135,005 
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Figure D-2. Map of U.S. indicating counties corresponding to 50 sampled Centers (using PPS 

sampling with size defined as the amount of NIH funding).  
 

Table D-3, on the other hand, displays the number of children between the ages of zero 
and three (i.e., representing the number of births in the county for a four-year recruitment period) 
as a function of the number of Centers and the proportion of the population that is selected in 
each of the MSAs corresponding to the selected Centers.  Here we see that a smaller percentage 
of the children could be selected in each MSA and a smaller number of Centers could be 
selected.  Thus, Figure D-3 displays a realization of the MSAs that are selected if PPS sampling 
of 43 Centers is conducted.  (Again, note that some of the Centers end up being selected with 
certainty since their relative size exceeds the inverse of the Centers sample size.)   
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Table D-3.  Total number of children aged 0 to 3 sampled from MSAs where medical research 

centers are located.  
 

Percent of Sampled Population from MSAs (Average over 20 Trials) Number of 
Centers 1% 2% 3% 4% 5% 
30 55,883 78,060 88,057 94,798 99,194 
31 56,676 79,807 90,382 97,586 102,225 
32 57,822 81,163 92,070 99,561 104,691 
33 60,061 84,407 95,623 103,622 108,959 
34 59,519 85,143 97,399 105,829 111,537 
35 63,671 88,953 101,459 109,908 115,388 
36 64,095 90,829 104,273 113,523 119,598 
37 67,135 94,502 107,967 117,199 123,395 
38 66,050 93,399 107,171 117,040 123,873 
39 67,854 96,221 110,494 120,606 127,490 
40 69,523 97,801 112,448 122,726 129,671 
41 71,269 100,506 115,507 125,875 132,935 
42 73,148 103,338 118,476 128,989 136,086 
43 75,625 105,332 120,591 131,380 138,441 
44 76,112 106,781 122,681 133,813 141,389 
45 77,981 109,699 126,422 138,283 146,339 
46 79,769 111,855 128,517 140,334 148,330 
47 81,016 113,091 129,872 141,980 150,270 
48 83,323 115,391 132,521 144,806 153,261 
49 84,091 117,464 135,190 147,858 156,676 
50 85,210 119,494 137,594 150,529 159,619 
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Figure D-3. Map of U.S. indicating MSAs corresponding to 43 sampled Centers (using PPS 

sampling with size defined as the amount of NIH funding).  
 

These examples provide insight into some of the plausible properties of a design that is 
based on a Centers approach to sampling.  For example, the results may aid in identifying 
appropriate numbers of Centers to include in the NCS, and illustrate the potential that a Centers 
design has in providing geographic coverage of the nation.  However, it should be noted that the 
Centers approach may suffer from selection of a disproportionate number of subjects from urban 
areas since typically respected medical Centers are in these more urban areas.  To mitigate this, 
Chapter 5 suggests that it may be possible to establish one or several Centers in more rural areas, 
such as the Children’s Health Center operated by UC Berkeley in the Salinas Valley Farm 
Community.  

 
The examples above illustrate a probabilistic approach to sampling Centers from the list 

of Centers (admittedly this list is limited at this stage).  Of course, as noted in Chapter 5 of this 
report, it is more likely that Centers would be selected in a purposive manner through a 
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procurement process, and thus, a purposive approach to sampling Centers was implemented in 
the designs described in Chapter 5 of this report (and utilized in Chapter 9).   

 
 

D-3 DETAILS OF SAMPLE SELECTION 
 

Figure 3-1 of Chapter 3 provides a view of the structure of the samples used in the 
simulation.  Each sample is the result of a mix of two sampling strategies that together provide 
about 100,000 eligible women.  A portion, P1, of the sample comes through the use of a national 
probability-based sample (NPBS) and the remainder, 1-P1, comes through the use of a 
purposively selected Centers sample.  The NPBS selects households through a probability 
sample that first selects a fixed number of counties and then households within the selected 
counties.  We will refer to the resulting NPBS sample as the two-stage sample (or two-phase 
sample).  The second strategy begins by choosing a predetermined number of medical Centers 
that provide services to pregnant women.  The number of potentially eligible women served by a 
Center dictates whether or not a Center is chosen.  Once the Centers are selected, each center is 
associated with a random sample of eligible women referred to as a Center sample. 
 

Center samples in turn come from two sources.  A portion of the Center sample, P2, 
comes through a probability sample of households from the metropolitan area served by the 
Center (the Center's MSA).  The remaining portion, 1-P2, is obtained through random sampling 
of the Center's list of patients. 
 

Each sample used in the simulation was derived using one of 21 parameter settings. The 
variations are listed in the first three columns of Table 5-4 in Chapter 5. The number of counties 
selected as part of the two-stage sample was set to 0, 50, or 100. A setting of 0 meant that the 
entire sample was gathered through Centers.  In this case, P1 was set to 0 and P2 to 0.25, 0.50, or 
0.75. When 50 or 100 counties were selected, both P1 and P2 could vary from 0.25 to 0.75 in 
increments of 0.25. The simulation included 50 samples of each of the 21 sample types. 
 

In the following paragraphs we describe in more detail the two-stage NPBS and Center 
samples. 
 
D-3.1 THE TWO-STAGE (NPBS) SAMPLE 
 

Counties were selected as the primary sampling units (PSUs) of the two-stage sample.  A 
stratified sample based on region and degree of urbanization was used to ensure representation of 
different kinds of counties.  The number of counties entering the sample from a given stratum 
was proportional to the relative size of the stratum as measured by the number of households.  
Within a stratum, probability proportional to size (PPS) sampling was used to select the stratum's 
counties.  If a county's chance of selection met or exceeded 1, it was removed from its assigned 
stratum to form its own stratum in the PSU sample (i.e., a certainty strata). 
 

Households were the second stage sampling units (SSUs).  An attempt was made to 
choose the same number of households from each county.  If a county had fewer households than 
the number required, it was presumed that all households in the county would be sampled.  In 
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order to maintain the overall required number of sampled households in the face of counties with 
insufficient numbers, sampling from counties with sufficient household numbers was uniformly 
increased.   

 
As outlined in Chapter 5, we presumed that 1 of 12 selected households would result in 

the recruitment of an eligible woman. This meant that P1*100,000*12 households had to come 
from the two-stage sample. 
 
 
D-3.2 THE CENTER SAMPLE 
 

Centers were selected from a list of 104 medical research institutions (note that the 
Center in Puerto Rico was excluded from the list of Centers for the purposive sampling of 
Centers).  The institutions had been recent recipients of National Institutes of Health (NIH) grant 
funding.  An annual number of births was associated with most of the centers, derived through 
contacting centers or through web-based resources.  Centers for which birth rates could not be 
found were assigned the median value of the non-missing rates.  
 

The number of women entering the sample through a Center sample was fixed at 2000.  
Given that (1-P1)* 100,000 of the desired sample of women was to come through the Centers, the 
number of Centers that had to be selected was given by the smallest integer (nc) bigger than (1-
P1)*100,000 /2000.  To pick the needed number of Centers, we simply selected the top nc 
Centers in terms of annual birth rate. 
 

A Center sample was derived through two mechanisms: list sampling and area sampling.  
List sampling gathered from each Center (1-P2)*2000 women through a random sample of 
eligible women (i.e., women that give birth) from the list of patients served by the Center.  In this 
sampling, all eligible women at a Center were presumed to have an equal chance of entry into the 
sample.   
 

Center area sampling involved random sampling of households in a center’s MSA. From 
each center, 12* P2*2000 households were sampled, with each household having an equal 
chance of selection. The factor of 12 is derived from the presumption that 1 of 12 selected 
households will result in the recruitment of an eligible woman (i.e., a live birth).   
 

For Center area sampling, counties selected as part of the two-stage sample were 
excluded from Center areas. When all counties in a Center MSA were selected as part of the two-
stage sample, no restrictions were placed on the counties targeted for that Center area.  If a 
county participated in both the two-stage and Center area sampling, the chance of a woman in 
that county being selected into the sample was set to the chance of being selected into the two-
stage or Center-area sample. 
 
 



Developed for Discussion D-16  
at the Sample Design Workshop  March 19, 2004 

D-4 DESIGN EFFECTS FOR ESTIMATION OF POPULATION MEANS AND 
PERCENTAGES 

 
As suggested in Chapter 5 of this report, there is a trade-off between the cost and 

complication of coordinating a long-term longitudinal cohort study spread over many PSUs, and 
the loss of information inherent in highly clustered data when the study is not spread over many 
PSUs.  Additionally, if weighted analyses are to be utilized, there may also be a loss of 
information due to unequal sample weights for the selected units.  In this section, we consider 
this issue of information loss by discussing design effects associated with the estimation of 
population means and percentages.  Note that the primary purpose of the NCS is estimation of 
relationships between exposures and outcomes, not estimation of population means and 
percentages, suggesting that design effects for these estimates are not of primary interest.  
However, since design effects for population means and percentages are relatively 
straightforward to calculate, they offer an important starting point for this discussion.  In the 
following section of this appendix we provide more relevant results on the design effects 
associated with estimation of relationships.   

 
In general, the design effect measures the loss of information by computing the ratio of 

the variance under the selected sample design (e.g., a clustered and unequally weighted design) 
to the variance that would be realized under a design that involves simple random sampling.  
Thus, the design effect can be thought of in terms of the impact of different weighting and 
clustering schemes on the estimated variances of parameters of interest.  For estimation of 
population averages, calculation of the design effect involves consideration of both the clustering 
associated with the design and the unequal weighting that is realized in the design.  In the 
following paragraphs we outline how these two factors are incorporated into the design effect.  
 

The effect of PSU level clustering on estimating a population mean can be expressed in 
terms of the design effect (DECL) using the following formula 
 

)1(1 −+= PSUPSUCL nDE δ     (D-9) 
 
where PSUn  is the average number of participants per PSU, and PSUδ  is the PSU intraclass 
correlation coefficient.  Intraclass correlation coefficients measure the homogeneity of the 
parameter of interest within a cluster, in this case within a PSU, and, for a particular population 
parameter and class (PSU), can be estimated using a variance component breakdown of the 
variability in measurements of the parameter.  In particular, letting 2

Bσ  be the mean square 
deviation among the classes, average subject-level measurement of the parameter and letting 2

Wσ  
be the average across classes of each PSU’s individual mean square deviation in measurement 
error across subjects, an estimate of the PSU intraclass correlation coefficient is 
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In the Westat report (2002) a general (or average) PSU (recall that PSUs are counties 
here) intraclass correlation coefficient of 0.01 is presented.  It is based on data from a wide 
variety of items studied in Cycles II and IV of the National Survey of Family Growth (NSFG).  
Here we use generalized estimating equations and the NHANES III data to estimate the 
intraclass correlation coefficients for asthma, injury, obesity, and low birth rate outcomes as 
surrogates for the responses of interest in the NCS core hypotheses.  Table D-4 presents the 
NHANES III intraclass correlation coefficient estimates (note that some of these estimates are 
negative indicating that they are essentially zero).  Based on these estimates, we assumed the 
range of reasonable intraclass correlations was from 0.005 to 0.02, and use values from this 
range in the results of Chapter 9 (e.g., 0.01 to 0.02 for asthma and injury, and 0.005 for outcomes 
that occur less frequently such as autism).  (Of course, note that correlations exhibited in the 
NCS data may be higher or lower than those observed in the NHANES III data.) 
 
 
Table D-4.   Intraclass correlation coefficient estimates based on NHANES III data. 

Condition Age Group 
Intraclass 
Correlation 
Coefficient 

2-11 months 0.011 
12-35 months 0.000 
3-5 years 0.010 
6-11 years 0.013 

Asthma 

12-19 years 0.020 
2-11 months -0.003 
12-35 months 0.001 
3-5 years 0.004 
6-11 years 0.018 

Injury 

12-19 years 0.009 
2-11 months -0.006 
12-35 months -0.004 
3-5 years 0.020 
6-11 years 0.007 

Obesity 

12-19 years 0.004 
2-11 months 0.0152 
12-35 months 0.0029 
3-5 years 0.0049 
6-11 years 0.0070 

Low Birth 
Weight 

12-19 years -0.0037 
 
 

As noted previously, in addition to clustering, unequal sample weights have an effect on 
the variability of population mean (or percentage) estimates.  This effect can also be expressed in 
terms of a design effect (DEW) by 
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where the jw  are the sample weights (Kalton et al., 2003).  Note that the form of this equation 
suggests that increased variability in the weights leads to increased variability in overall 
population estimates.  Recall that Section 5.1 discusses implementation of a national probability-
based sample, and provides examples of selecting a national probability-based sample with 50 
and 100 PSUs.  For the weight distributions summarized in Figure 5-2 (single realizations of 
national probability designs with 50 and 100 PSUs), the value of DEW for the sample with 50 
PSUs is 1.40 and the value of DEW for the sample with 100 PSUs is 1.16. This is not surprising 
as two of the issues impacting weights, small counties and integer allocation of PSUs to strata, 
are mitigated with more PSUs (i.e., the definition of a small county includes fewer counties when 
more PSUs are available, and integer proportional allocation strays less from proportional 
allocation when more PSUs are allocated).     
 

Table D-5 presents estimated clustering contributions to design effects for PSU sample 
sizes of 50 and 100 under intraclass correlation coefficient assumptions deemed appropriate for 
each core hypothesis measure (see Table D-4).  Also presented are estimated design effects due 
to unequal weighting for PSU sample sizes of 50 and 100.  The effects provided in the table were 
estimated using 50 simulated samples of each design, and assuming that the entire cohort is 
selected in a national probability-based sample.  Design effects for the multi-frame (hybrid) 
designs described in Chapter 5, where a portion of the cohort is selected in a national probability-
based sample and a portion is selected through a set of purposively selected Centers, are 
described below.  Note from the table that there appears to be a large design effect due to 
clustering of the data, and a somewhat smaller design effect for the unequal weighting resulting 
from the design.  
 
Table D-5.  Effect of PSU sample size on clustering and weighting contributions to the design 

effect 
Clustering Design Effect 

Number 
of 
PSUs Asthma Injury Obesity 

Low 
Birth 
Weight 

Weighting 
Design 
Effect 

50 21.0 11.0 21.0 11.0 1.24 
100 11.0 6.0 11.0 6.0 1.09 

 
 
 

For the 21 hybrid designs described in Chapter 5, and utilized in Chapter 9, Table D-6 
provides the estimated design effect for estimating a population average (or percentage) due to 
weighting for each of the hybrid designs defined by the levels of P1 and P2 considered (see  
Chapter 5 or Chapter 3).  Since the number of clusters and the weighted average sample size 
within clusters are important to assessing design effects due to clustering within a design (see 
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formulas above), these values are also provided in Table D-6 for each of the 21 designs 
considered.  Recall that we assume that each Center can recruit and follow a total of 2000 
subjects, and thus, given the number of PSUs, and given the value of P1, the number of clusters is 
determined by simply adding the number of national probability sample PSUs and the number of 
Centers.  (Note that in Chapter 9, the number of clusters is defined slightly differently as the 
number of NPBS PSUs plus two times the number of Centers.)   

 
Note from Table D-6 that the design effect due to weighting generally decreases as the 

portion of the cohort selected in the NPBS increases.  Additionally, note that as the number of 
PSUs increases from 50 to 100, the design effect also decreases.  However, we would again like 
to note that these design effects are relevant to estimation of a population average (not a 
relationship) when conducting a weighted analysis.  As discussed below, they may not reflect the 
design effect associated with estimating a relationship, and certainly do not apply to the case of 
conducting an unweighted (or model-based analysis).  
 
Table D-6. Number of clusters, weighted average sample size within cluster and weighting 

contributions to design effects for 21 hybrid designs. 

P1 
Number of 

PSUs P2 
Number of 
Clusters 

Weighted Average 
Sample Size Within 

Cluster 
Design Effect Due to 
Unequal Weighting 

25 50 2000 5.275 
50 50 2000 2.751 0  
75 50 2000 2.061 
25 89 1601 2.448 
50 89 1596 2.276 50 
75 89 1600 2.205 
25 76 1497 1.604 
50 76 1498 1.419 

25 

100 
75 76 1502 1.372 
25 64 1652 1.42 
50 64 1650 1.229 50 
75 64 1660 1.204 
25 138 1530 2.562 
50 138 1524 2.428 

50 

100 
75 138 1527 2.418 
25 125 1241 1.564 
50 125 1238 1.442 50 
75 125 1239 1.439 
25 113 1046 1.256 
50 113 1044 1.167 

75 

100 
75 113 1047 1.165 

 
For the NCS, one major issue with the above approach to design effects is that the 

formulas provide design effects for population means (or percentages), which is not the primary 
goal in the NCS.  Computing design effects for parameters of a regression relationship (i.e., 
design effects for estimates of a relationship) may depend on a number of additional factors.  For 
example, the design effect due to clustering might be reduced if clustering of the response 
variable is partially explained by clustering of an explanatory variable.  Additionally, the values 
of explanatory variables impact the effect that weights have on design effects.  Finally, design 
effects for relationships that are constant across clusters may be significantly smaller than design 
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effects for relationships that vary by cluster.  In the following section we provide further 
discussion of the calculation of design effects when estimating relationships.   
 
 
D-5 DESIGN EFFECTS FOR ESTIMATION OF RELATIONSHIPS 
 

The purpose of this section is to explore the use of design effects for estimating 
relationships of interest in the presence of clustering and/or unequal weighting.  While quite a lot 
has been written in the sample survey literature, much of this has been in the relatively simple 
context where the goal is to assess the precision that a planned study might have to estimate a 
summary quantity such as a mean (see previous section).  In the context of the NCS, however, 
the situation is substantially more complicated, since estimation of relationships is of primary 
interest.  To address this, we begin from first principles.   
 

Suppose we are interested in exploring the relationship between an exposure and an 
outcome, based on data from clusters of individuals, each of whom has a binary response.  Let Xij 
be the exposure for individual j in cluster i and let Yij be this individual’s corresponding 
response.  Suppose also that we are interested in fitting the following marginal logistic model: 
 

Logit[Pr(Yi=1|Xi=1)] = Logit(µij) = β0 + β1 Xij..    (D-12) 
 
In practice, of course, there will also be interest in including additional covariates and risk 
factors.  For the purpose of power and sample size considerations, however, it is enough to 
consider just the main effect of interest.   As discussed elsewhere in the report (see Chapter 9), 
generalized estimating equations (GEEs) provide an appropriate basis for analysis that accounts 
for both non-constant sampling probabilities, as well as for clustering of individuals (see Diggle 
et al., 2002).  Let wij be the sampling weight for the jth individual in the ith cluster (generally, this 
will be the inverse of their selection probability).  Then, a suitable estimating equation for the 
unknown parameter β=(β0,β1)T is  
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where n is the number of clusters, mi is the number of subjects in cluster i, and µij is the mean 
response for individual j in the ith cluster.  The introduction of the weights, wij, into the 
estimating equation (D-13) complicates the estimation of the variance of the parameter estimates, 
β̂ .  However, standard estimating equations theory can be used to establish that 
 
 1 1ˆ( ) ( ) ,TVar B A Bβ − −=   (D-14) 
 
where B is the matrix of partial derivatives of U(β) and A is the variance of U(β).   This is the 
calculation automatically performed in software such as SUDAAN or SAS PROC GENMOD (if 
the empirical variance option is invoked).  It is relatively straightforward to show that 
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where j and j’ represent two arbitrarily chosen individuals from the ith cluster.   In certain cases, 
the expression for the Var( β̂ ) simplifies.  For example, suppose that the covariate of interest, X, 
is cluster specific so that xij is the same for all members of the same cluster.  Then, A and B 
simplify and in large samples will approximate the following:  
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where E(wi) refers to the average of the weights for the ith cluster,  and 
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with E(.) again referring to an average over the cluster and ρ referring to the within-cluster 
correlation with respect to the outcome, Y.  A few more special case considerations are helpful.  
First, consider the case where there is no within-cluster correlation (ρ=0) and also assume that 
the weights are independent of cluster membership and exposure, hence can be pulled out of the 
sums.  It follows in this special case that  
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Note that this expression corresponds to the standard variance estimate based on a logistic 
regression, multiplied by a factor that involves the weights.  The factor can be re-expressed as:  
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or 1 plus the squared coefficient of variation of the weights.  When the weights are constant, this 
factor equals 1 and the standard logistic regression variance formula applies.  When the weights 
vary, then this factor will always exceed 1; hence the variance of parameters estimated using 
weighted estimating equations will always exceed those based on a simple logistic regression.  
This is a well known result among sample survey statisticians.  The extra term is often referred to 
as a design effect.  As described in the previous section, these design effects provide a very 
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useful tool when it comes to study planning and design, since one can think in terms of the 
impact of various different weighting schemes on the estimated variances of parameters of 
interest, and adjust accordingly.   
 

Now consider the slightly more complex setting where the intra-cluster correlation, ρ, is 
non-zero. Using a similar logic, it is relatively straightforward to show the design effect (or the 
factor that multiplies the usual logistic regression variance) is: 
 

2
'1 ( 1) ( 1)cov( )ij ijm CV m w wρ ρ+ − + + − ,       (D-21) 

 
where m is the average cluster size and the covariance term refers to the covariance between 
weights within the same cluster.  In general, we would expect this covariance term to be 0.   In 
the special case where the weights are all equal (variance and covariance of the weights equal  
0), the design effect reduces to (1+ρ(m-1)), which is the usual inflation factor for a variance 
based on cluster data (see Diggle et al., 2002).   
 

When the covariate of interest, X, is allowed to vary within-cluster, all these calculations 
become considerably more complicated.  To facilitate our discussion here, consider the case 
where exposure is binary and let p1 denote the probability that an individual is exposed, and 
p0=(1-p1) the probability that an individual is not exposed.  Also, for simplicity, we define µ1 to 
denote the response probability for exposed individuals and µ0 the response probability for an 
unexposed individual.  Then, it is relatively straightforward to show that the derivative of the 
estimating equation (see Equation (D-15)) will, in large samples, be approximately 
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where, as before, m is the average cluster size and ∆1 refers to the term in square brackets.  
Similarly, the variance of the estimating Equation (D-16) will be approximately:  
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where ∆2 is more complicated and equal to the following: 
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where p11 is the probability that two members of a cluster are both exposed, p00 is the probability 
that they are both unexposed, and p01 and p10 refer to the probability that one is exposed and the 
other is not exposed.   Note that we have made a simplifying assumption here that the intra-class 
correlation (ρ) is constant for all subjects, and not dependent on the value of covariates.  In this 
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complicated setting, it is not so straightforward to specify a design effect.  However, 
consideration of some special cases for ∆2 is worthwhile and allows us to explore the impact of 
various correlation patterns on estimated variances.  First, consider the special case where there 
is perfect within-cluster correlation with respect to exposure values, meaning that p01 and p10 are 
both zero, p11=p1 and p00=p0.  In other words this is once again the cluster-specific covariate case, 
where all subjects in a cluster are either exposed, or all subjects in a cluster are unexposed.  In 
this case, ∆2 is identical to ∆1, and the design effect is once again given by Equation D-21.  
Alternatively, for the case where there is no within-cluster correlation with respect to X, we have 
p11=(p1)2

 , p00=(p0)2 and p10=p00=p0p1.  In this case, there is no simple way to compute a design 
effect; however, it is easy to use a computer package such as R or Splus to compute the variance 
of the estimated parameter under various assumptions on the degree of clustering and weighting.  
In particular, the variance of the estimated parameter under the clustered and weighted design is 
given by:  

1 2 1 1 2
1 ' 1 2 1( ) ( 1) ( , ) /[ ( )]wc ij ijV E w m E w w nmE wρ− − − = ∆ + − ∆ ∆ ∆  .    (D-25) 

 
In contrast, the variance under simple random sampling is: 
  

1 2
1 /[ ( )]sV nmE w− = ∆  .        (D-26) 

 
Note that in general, there is no simple multiplicative relationship here, as we saw in the simpler 
setting of cluster-specific covariates.  Indeed, the relationship between variance estimates under 
simple and complex sampling differs according to which component of the parameter vector is 
being examined.  To examine the ratio of the variances for the coefficient β1, we simply pull off 
the (2,2) elements of these two variance expressions and take their ratio.  Figure D-4 displays 
how this ratio varies as a function of µ0, the intraclass correlation in Y, and whether or not the 
exposure covariate is cluster-specific or varies within-cluster.  Note that this plot assumes equal 
weights so that we can focus on just the effect of clustering.  Additionally, note that the ratio 
displayed is the ratio of the variance under simple random sampling to the variance under the 
clustered design, which can be thought of as the inverse of the design effect.   
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Figure D-4. Ratio of the variance of the parameter (relationship between Y and X) estimate for a 

simple random sample to that for the clustered design (assuming equal weights).  
 

The left-hand panel of the figure corresponds to the case of a non-zero within-cluster 
correlation with respect to exposure. This means that each cluster is likely to have a mix of 
exposed and unexposed individuals.   The right-hand panel corresponds to the case where there is 
perfect within-cluster correlation with respect to exposure – that is, either all individuals in a 
cluster are exposed, or all the individuals in a cluster are unexposed.  Note that the inverses of 
the “design effects” are much closer to 1 in the left-hand panel, suggesting that the effect of 
clustering is not nearly as severe when we have a within-cluster varying covariate.  In other 
words, the impact of clustering on the estimated variances of parameter estimates is moderate 
compared to the more familiar case where covariates are constant within-cluster.  The figure 
suggests that use of standard “design effects” arguments can lead to misleading results when 
designing a cohort study such as the NCS.  In fact, we suspect that there may be cases where the 
inverse of the design effect is greater than 1 (i.e., the clustering is actually allowing more 
accurate estimates of the relationship).  Further work is needed to verify this suspicion, and to 



Developed for Discussion D-25  
at the Sample Design Workshop  March 19, 2004 

better lay down the framework and assumptions that are inherent in calculation of design effects 
when estimating relationships.   
 

For these reasons, the power results in Chapter 9 of this report estimate power via 
simulation under a number of assumptions regarding the specific regression relationship between 
response and explanatory variables.  In other words, since design effects for relationships are not 
easily calculated, the power calculations conducted in this report are done via simulation, rather 
than through the use of design effects. 
 
 
D-6  POWER FOR A SIMPLE RANDOM SAMPLE 
 
 For simple inferences that treat the cohort as a simple random sample (SRS), analytical 
formulas are available for computing the power to detect a specified effect.  Consider the simple 
2-by-2 table of disease presence by exposure presence displayed in Table D-7.  Based on this 
table, an estimate of the odds ratio is given by 
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and an approximate variance of the log of this estimate (Agresti, 1990) is  
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Table D-7. Example 2-by-2 table of disease presence by exposure presence. 
 

Exposure Presence Disease 
Presence Present (1) Absent (0) 

Total 

Present (1) n11 n10 n1. 
Absent (0) n01 n00 n0. 
Total n.1 n.0 N 

 
Under the assumption that the estimate of the log-odds ratio is approximately normally 
distributed (it is asymptotically normally distributed), an analytical formula relating the total 
sample size (n), the Type 1 error rate (α), the power (1-θ) for a two-sided test, the prevalence of 
the risk factor (n.1/n), the prevalence of the outcome (n1./n), and the odds ratio describing the 
relationship between the disease and the risk factor (OR) can be derived.  The formula is: 
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where Φ is the cumulative distribution factor (CDF) of a standard normal distribution, z1-α/2 is the 
upper α/2 percentile of a normal distribution, and the formula for V(ln(OR)) can be found above.  
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(Note that given the odds ratio, the sample size, the prevalence of disease, and the prevalence of 
exposure, the values for nij can be derived.)   
 

As mentioned in Chapter 9, there are certainly other methods for evaluating the 
significance of the relationship between a single binary exposure factor X and a single binary 
health outcome Y, and these other methods would lead to alternative formulas for the power to 
detect a relationship of interest.  For example, Whittemore (1981) also provides a formula that 
relates sample size, Type 1 error rate, power for a one-sided test, prevalence of the risk factor, 
prevalence of the outcome, and the strength of the relationship between the risk factor and the 
outcome for a simple univariate logistic regression model with a single dichotomous covariate.  
The formula is based on the sampling distribution of the Wald statistic for the estimate of the 
logistic regression coefficient (i.e., β1), and is as follows 
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where π=P(X=0), p0=P(Y=1|X=0), β1 is the true log-odds ratio, z1-α and z1-θ are the upper α and θ 
percentiles of a normal distribution, and 1-θ is the desired power (see Hosmer and Lemeshow, 
2000).   
 
Finally, a formula based on simply comparing the proportion of individuals with the disease in 
the unexposed group, P0=P(Y=1|X=0), to that of the exposed group, P1=P(Y=1|X=1), could be 
derived.  For example, as described by Rosner (1999) and many others, (and similar to Equation 
D-29 above) the power associated with a study of N individuals (assuming a 2-sided test at 
significance level 0.05) can be calculated as 
 

( ) ( )KzKz −−Φ+−Φ−= −− 2/12/11Power αα ,    (D-31) 
 
where )]1(/[)1()( 01 pppNpPPK xx −−−= , px is the probability of being in the exposed group, 
and p represents the weighted average of P1 and P0, p=pxP1+(1-px)P0 (i.e., the marginal 
probability of disease).  Since it is envisioned that these alternative formulas would generally 
provide qualitatively similar results, we will present results corresponding to the power 
calculation provided in Equation D-29.   
 
 Thus, analytical formulas for the power of detecting a specified relationship are available 
when the data are selected as a simple random sample.  For this reason, power can be calculated 
for a large number of scenarios; however, the power values and resulting conclusions must be 
interpreted in light of this simple random sample assumption (see discussion in Section 9.2).  
More particularly, the power values do not account for the effect of clustering and unequal 
weighting that will likely be elements of any feasible NCS design.  Therefore, these calculations 
likely represent optimistic values for the power to detect the relationships of interest; however, 
their ease of computation allows investigation of a large number of scenarios and provides 
insight into: 
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•  The effect of sample size (which is influenced by retention rates associated with a 
selected hypothesis and the costs associated with different designs), 

•  The effect of differing levels of disease and exposure occurrence rates, and 
•  The odds ratios that can be detected for the different scenarios. 

       
In the following, we provide a set of general SRS power results that may be applicable to 

a variety of situations, and discuss several examples of the usefulness of these results.  Recall 
that the factors affecting the simple random sample power of detecting a significant relationship 
between a categorical outcome Y, and a binary risk factor X, are: sample size, strength of the 
relationship, rate of occurrence of X and Y, and the desired significance level of the hypothesis 
tests.  For these factors, we evaluate the following scenarios: 

 
•  The sample size n takes values of 5000, 10000, 25000, 35000, 50000, 75000, and 

100000 individuals.  Comparing the power associated with different sample sizes 
could allow comparison of different designs in terms of their retention rates, cost, 
and/or availability of the information relevant to the hypothesis of interest.  For 
example, comparing a design that would result in a retention rate (retention 
through the time period associated with a selected hypothesis) of 50% versus a 
design that would result in a  retention rate of 75% could be done by comparing 
the n=50000 and the n=75000  sample size power estimates.  Similarly, 
comparison of a design that costs twice as much per individual as another design 
could be done by comparing the n=50000 and n=100000 sample size power 
estimates. (Note that this may be useful when comparing designs assuming a 
fixed cost.  Under a fixed cost, the cheaper design would allow the study to 
include 100000 individuals, whereas the more expensive design would only allow 
the study to include 50000 individuals.)   

•  The strength of the relationship between X and Y is parameterized using the odds 
ratio (see Section 9.2), and takes a range of values between 1 and 11 so that a full 
range of odds ratios (displayed on the log-scale in the figures below) can be 
considered.  (Note that an odds ratio of 11 represents a very strong relationship 
between X and Y.)   

•  The rate of occurrence of X, or exposure prevalence, takes values of 0.01, 0.05, 
0.10, and 0.20.  This range of exposure prevalence is meant to span the reasonable 
range of possible exposures that are of interest in the core hypotheses.  For higher 
exposures that are more prevalent than this range (e.g., exposure prevalence up to 
0.50), the resulting power would be even higher than is realized for the lower 
exposure prevalences considered.  

•  The rate of occurrence of Y, or disease prevalence, takes values of 0.0025, 0.005, 
0.01, 0.05, and 0.10.  This range of disease prevalence is meant to span the 
disease prevalences associated with the core hypotheses (e.g., autism and cerebral 
palsy occur with prevalences of approximately 0.0030 and 0.0020, respectively, 
and asthma or injury occurs with a prevalence on the order of 0.05 to 0.10).    

•  The significance level of all tests is assumed to be α=0.05.   
 

For each of the above settings, figures that display the power as a function of the odds 
ratio are constructed.  For example, Figure D-5 displays the power for detecting the relationship 
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between a rare health outcome (disease prevalence of 0.0025 or 25 out of every 10,000 
individuals), such as autism and cerebral palsy, and a binary risk factor.  The upper left panel of 
the figure displays the power as a function of sample size (the different lines) and the odds ratio 
(the horizontal axis) for a binary exposure risk factor with a prevalence of 0.01 or 1 out of every 
100 individuals (the horizontal line is drawn at a power of 0.80).  As expected, power increases 
as a function of sample size and as a function of the strength of the relationship between the 
outcome and the risk factor.  The graph demonstrates that even for a sample size of n=100,000, 
an odds ratio of close to 3 is required in order to detect a significant relationship with 80% 
power.  This picture becomes somewhat more promising as the prevalence of the exposure (or 
exposure occurrence rate) increases, with odds ratios on the order of 1.5 being detectable with 
80% power when the exposure prevalence is 0.20 (20 out of every 100 people experience the 
exposure).  From a design perspective this generally implies that for diseases with very low 
prevalence, weak relationships (e.g., odds ratios of 1.1) will be difficult to detect even with a 
sample size of 100,000 individuals.  The other panels of the figure display the same type of 
information but for different values for the prevalence of the risk factor (0.05, 0.10, and 0.20, 
respectively).  Figures D-6 through D-9 display similar figures for the other levels of disease 
prevalence investigated.  
   

 

 
Figure D-5.  SRS power for detecting a significant relationship between a health outcome with a 

prevalence of 0.0025 and a binary risk factor.    
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One possible use of these figures is to compare different designs through their potential 
realized sample size.  For example, suppose one design involves a retention rate of 50% for the 
time period associated with the hypothesis of interest and another design involves a retention rate 
of 75% over the same time period.  Then comparing the n=50,000 and n=75,000 power curves 
can provide a means of comparing the power associated with the different designs.  Similarly, 
comparing a design that costs twice as much per individual as another design can be 
accomplished by comparing the n=50,000 and n=100,000 power curves.  While these curves 
seem relatively similar in the figures it should be noted that there can be significant differences 
in terms of their power.  For example, if we consider the top right panel of Figure D-5, an odds 
ratio of 2.0 corresponds to a power of over 0.85 for a sample size of 100,000 individuals; 
however, for a sample size of 50,000 the resulting power is on the order of 0.60.  Thus, despite 
the relative similarity of these curves, there can be significant differences in their corresponding 
power. 
 
 

 
Figure D-6.  SRS power for detecting a significant relationship between a health outcome with a 

prevalence of 0.005 and a binary risk factor. 
 

As a more concrete example, consider the core hypothesis concerned with the 
relationship between major congenital malformations of the heart (birth defect health outcome) 
and impaired glucose metabolism during pregnancy for women without diabetes before 
pregnancy.  Congenital heart defects occur in approximately 0.60% of individuals, or 6 out of 
1000 individuals, and impaired glucose metabolism occurs in approximately 5% of pregnant 
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women (see Chapter 6).  For these disease and exposure characteristics, the top right panel of  
Figure D-6 displays an estimate of the power to detect relationships of specified sizes.  For 
example, a sample size of 100,000 individuals would provide approximately 80% power to 
detect an odds ratio of approximately 1.6, and a sample size of 50,000 individuals would provide 
greater than 80% power to detect an odds ratio of 2.0.  Thus, for this hypothesis, assuming that 
the necessary information (i.e., presence/absence of congenital heart defects and 
presence/absence of impaired glucose metabolism in the mother) is available for most, if not all, 
of the cohort, there will likely be sufficient power to detect odds ratios of 1.6 and greater.  
Additionally, note that this result is likely robust to the retention rate associated with a design 
since the information for evaluating this hypothesis would presumably be collected very early in 
the study (i.e., prior to any significant portion of the cohort dropping out).    
 
  

 
Figure D-7. SRS power for detecting a significant relationship between a health outcome with a 

prevalence of 0.01 and a binary risk factor. 
  
 As another example, consider the hypothesis concerned with whether infection and 
mediators of inflammation during pregnancy and the perinatal period are associated with 
increased risk of schizophrenia.  Approximately 1 percent of the population develops 
schizophrenia during their lifetime; however, the disease rarely develops prior to adolescence.  
From a retention standpoint this may be one of the most difficult diseases to investigate, since 
evaluation of the presence/absence of disease will necessarily occur at some point far along in 
the study (e.g., after 10 years or even up to the full length of the study).  Presumably, the 
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retention rates will decrease as a function of time, perhaps significantly, meaning that there may 
be a significant reduction in the available sample size to evaluate this hypothesis.  The bottom 
right panel of Figure D-7 displays the power to detect specified odds ratios for a disease that 
occurs in approximately 1 percent of the population and for a risk factor that occurs in 20 percent 
of the population (i.e., we nominally assume that mediators of inflammation during pregnancy 
and the perinatal period occur in 20 percent of the population).  If a design were to result in a 
retention rate of 20 percent over the 20-year period, then at a maximum, 20,000 individuals 
would be available for evaluating this hypothesis, and an odds ratio around 1.6 would be 
detectable with 80 percent power.  On the other hand, if a design were to result in a retention rate 
of 50 percent over the 20-year period, then at a maximum, 50,000 individuals would be available 
for evaluating this hypothesis, and an odds ratio of approximately 1.3 would be detectable with 
80 percent power.   
 
 

 
Figure D-8.  SRS power for detecting a significant relationship between a health outcome with a 

prevalence of 0.05 and a binary risk factor. 
 
These figures can also be used to evaluate and interpret the sample sizes necessary to detect 
relationships of interest.  For example, suppose we desire to detect an odds ratio of 2.0 with 80% 
power for a disease that occurs in approximately 5 out of every 1000 individuals and an exposure 
that occurs in 20 out of every 100 individuals (i.e., lower right panel of Figure D-6).  Then, a 
sample size somewhere between 10,000 and 20,000 individuals would be necessary.  However, 
if we desire to detect an odds ratio of 1.1 for this scenario, even a sample size of 100,000 
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individuals would not provide sufficient information to achieve 80% power.  Thus, as expected, 
for rare diseases it will be difficult to detect weak relationships between the disease and the risk 
factor of interest implying that it will be necessary to collect the data needed to evaluate the 
hypothesis of interest for as many individuals in the cohort as possible.   
 

 
Figure D-9.  SRS power for detecting a significant relationship between a health outcome with a 

prevalence of 0.1 and a binary risk factor. 
 

 
 

On the other hand, for adverse health outcomes that are more common, such as asthma or 
injury, it may be necessary to collect the necessary information on only a subset of the cohort.  
For example, for a disease that occurs in approximately 5 out of every 100 individuals and for a 
risk factor that occurs in 20 out of every 100 individuals (bottom right panel of Figure D-8) it 
may only be necessary to collect the desired information for a subset of the NCS cohort (e.g., 
even with 20,000 individuals there is sufficient power to detect an odds ratio of 1.3).  From a 
cost perspective, these types of implications could lead to significant cost savings when/if 
evaluation of the risk factor or disease of interest is expensive.  In other words, for hypotheses 
involving collection of expensive information the power analysis suggests that sample sizes 
smaller than 100,000 will result in significant power to detect even weak relationships, then it 
may not be necessary to collect this expensive information across the entire cohort.  Rather, it 
may be more cost efficient to collect the expensive information for only a subset of the cohort, 
perhaps chosen at random or perhaps chosen based on other demographic or subject-specific 
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characteristics (e.g., family health history).  These types of design choices (i.e., collecting some 
information for only a portion of the cohort) represent an important consideration in the design 
of the NCS from both a cost perspective as well as a subject-burden perspective. 
 
 
D-7  FURTHER DETAILS OF SIMULATION APPROACH TO CALCULATING 

POWER 
 
D-7.1  SOME NOTES ON SIMULATING CORRELATED BINARY DATA 
 

The National Children’s Study (NCS) will involve correlated data, not only because 
children will be measured and assessed repeatedly over time, but also because recruitment is 
likely to be based on a clustered design. Here we focus on the challenging issue of assessing 
power for the NCS when the data are correlated.  For simplicity, we start out by ignoring the 
longitudinal aspect of the design and consider power calculations for the setting where subjects 
are clustered within groups and assessed for the presence/absence of a disease or condition of 
interest by a specified age.  By varying the assumed parameters, we will be able to consider 
power for different hypothetical situations, for example involving relatively rare conditions such 
as whether or not a child is diagnosed with autism, or more common conditions, such as whether 
or not the child develops asthma.  

 
The analysis of correlated binary data is complex and has been the focus of numerous 

statistical papers, especially over the past several decades.   Many different approaches have 
been suggested, mostly based on natural generalizations of the kinds of normal random effects 
models that are so widely used for correlated continuous data.  The main complication is that 
different approaches to incorporating random effects lead to fundamentally different models for 
binary data.  Although many different approaches have been suggested, the most popular 
methods tend to fall into one of the three following classes: 
  

1.  Logistic-normal models (which entail incorporating a cluster-specific normal 
random effect into a standard logistic model) 

2.  Beta-binomial models (which assume that cluster-specific response rates are 
generated from a beta distribution) 

3.  Generalized estimating equation (GEE) models (which avoid the need to assume 
any particular random effects distribution by specifying the mean and covariance 
structure of the observed data). 

 
Heagerty and Zeger (2000) provide an excellent overview of recent work related to the 

analysis of correlated data.  They distinguish between conditional and marginal model 
specifications.  The conditional approach generally involves formulating the mean outcome as a 
function of covariates as well as an unobserved subject or cluster-specific random effect, while 
the marginal approach specifies the mean outcome only as a function of observed covariates.  
Heagerty and Zeger (2000) discuss some of the reasons why maximum likelihood methods have 
traditionally been used to fit the conditional models, while marginal models have often been fit 
using GEEs.  They argue that maximum likelihood methods could also be used to fit marginal 
models and propose a method for doing so.  For the purpose of the power considerations here, 
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we will assume that analysis of data from the NCS will be based on GEE models.  As discussed 
in Chapter 9, the Sudaan software will be used for analysis, since this program provides a 
particularly convenient way to allow for sampling weights, as well as to adjust for clustering 
effects.  We also propose the use of GEEs based on an independence working correlation.  The 
reasons for this are several-fold.  First, our simulations suggest that the independence working 
assumptions will provide more stable numerical results.  Also, there is good reason to believe 
that this approach will be more robust to nonrandom selection problems and subject dropout.   

 
In order to describe the approaches in more detail, and to consider their implication for 

these power analyses, it is useful to introduce some notation reflecting outcomes measured on 
clusters of individuals, each of whom has a binary response.  Let Xij be the exposure for 
individual j in cluster i, and let Yij be the individual’s corresponding response.  Random effects 
logistic models assume that conditional on a cluster-specific random effect (suppose that this is 
bi for the ith cluster) that the response probability follows a logistic model: 
 

Logit[Pr(Yi=1|Xi=1, bi)] = β0 + β1 Xij + bi,     (D-32) 
 
where bi is a random effect, assumed to be normally distributed with mean 0 and variance σ2.  
The parameter β1 is the conditional log-odds ratio associated with exposure for the ith cluster, 
given the value of that cluster’s random effect.  It is sometimes also called a subject-specific log-
odds ratio and can be interpreted as reflecting the impact of a one-unit change in the covariate X 
on the response rates for an individual whose cluster membership remains unchanged.  One 
disadvantage of this random effects logistic model is that it can be difficult to interpret for the 
general population.  In particular, the odds ratio associated with the response rates of two 
arbitrarily chosen individuals is a fairly complex function of the parameters β0, β1 , and the 
random effects variance σ2.   Another disadvantage of the logistic normal approach is that there 
is no easy correspondence between the model parameters and the marginal response rates.  For 
example, the average response rate among unexposed individuals is not eβ0/(1+ eβ0) , as might be 
expected, but rather it is: 
 

P0 = ∫ eβ0+b/(1+ eβ0+b) f(b)db,     (D-33) 
 
where f(b) is the density of a normal random variable with mean 0 and variance σ2.  
Additionally, if we use the same logic to define  
 

P1= Pr(Y=1|X=1) = E[Pr(Y=1|X=1, b)],       (D-34) 
 

and then compute the log-odds, log[P1(1-P0)/(P0(1-P1))], this is not equal to the conditional log 
odds, β1. Furthermore, the nonlinearity of the logit function implies that the marginal response 
probability, Pr(Y=1|X), no longer follows a logistic model that is linear in X (see Liang et al., 
1992 for further discussion about the relationship between marginal and conditional regression 
models).  Finally, although it is not necessarily a problem, it is interesting to note that the 
intraclass correlation is not constant (even though there is a constant random effect).  The 
intraclass correlation needs to be calculated by integrating over the random effects distribution.  
In particular,  
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    Cov(YijYij’)= E(YijYij’) - E(Yij)E(Yij’).   (D-35) 
 

Aside from the problems with interpretation, fitting the logistic normal model is also a 
challenge, due to the fact that the likelihood does not exist in closed form.  A variety of 
approaches have been suggested, including numerical methods based on quadrature as well as 
Laplace approximations (see Breslow and Clayton, 1994, for a good discussion of this topic).   
 

To avoid these problems with the logistic normal, a number of authors have explored the 
beta-binomial model for the analysis of correlated binary data (Williams, 1988, was one of the 
earlier authors to suggest this method).  This model has been mostly explored in the context 
where the covariate (exposure) is measured at the cluster level (e.g., a litter of mice is either 
exposed or unexposed) in which case we have Xij=Xi for all j.  In that setting, the model is:  

 
Pr(Yij=1|pi) = pi     (D-36) 

 
where pi is the cluster-specific probability of response, and the pi's in turn are generated from a 
beta distribution: 
 

pi ~ beta(α1, α2),     (D-37) 
 
where the beta parameters α1  and α2 are chosen so as to produce the desired marginal 
expectations and correlations.  In the case of a dichotomous exposure, for example, these 
parameters could be chosen to yield an expected value of eβ0/(1+ eβ0) for the unexposed group 
and eβ0+β1/(1+ eβ0+β1) for the exposed group, along with the required intraclass correlation.  
 

When individuals vary with respect to their exposure levels, the beta-binomial is more 
complicated and much less has been written on the topic.  A natural extension goes as follows.  
For simplicity, consider the case of a dichotomous exposure. Let pi0 be the baseline response rate 
for unexposed subjects in the ith cluster.  Suppose we specify the response rate for an exposed 
individual, pi1, so as to ensure that the conditional odds ratio associated with exposure within the 
ith cluster is given by ∆c.  Simple algebra establishes that this is easily done by specifying 

 
pi1 = ∆c pi0 /[1-pi0 (1-∆c)].         (D-38) 

 
Note, however, that since pi1 is now a nonlinear function of pi0, this formulation loses the simple 
correspondence between the marginal response probabilities, P0 and P1.  To see this, suppose that 
we choose a beta distribution with parameters that ensure the desired marginal response rate 
among unexposed subjects, P0 = Pr(Yij=1|Xij=0).  Iterated expectation establishes that  
 

               P1  =  Pr(Yij=1|Xij=1)  
 
                    =  E(Pr(Yij=1|Xij=1,pi0 )]     (D-39) 
 
                    =  E[∆cpi0 /[1-pi0(1-∆c)]].                          
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Because this is an expectation of a nonlinear function of pi0, Equation D-39 will not in general 
equal ∆cP0 /[1-P0(1-∆c)]]=P1.  In other words, imposing a constant within-cluster odds ratio of ∆c 
will necessarily imply that the marginal odds ratio between unexposed and exposed subjects will 
be something different than ∆c, though a standard Taylor series argument establishes that the 
result will be close in certain cases.  Just as in the logistic normal case, the nonlinearity of the 
logit function implies that if we assume the within-cluster response rates follow a logistic model 
with respect to a covariate X, then the marginal response rates cannot also have a logistic form, 
except in the degenerate case where the intraclass correlation is 0 (in which case the pi0 are all 
constant and equal to P0).  To avoid this problem, one might consider formulations other than a 
logistic model for relating within-cluster response rates as a function of an exposure X.  For 
example, one might specify the within-cluster effect on a linear scale, pi1 = pi0 + ∆, so that the 
marginal response rates would also satisfy the same relationship:  P1 = P0 + ∆.  However, the 
disadvantage of this formulation is that  pi1  is no longer constrained to lie between 0 and 1.   A 
practical solution is to use the implied value of P1 (Equation D-39) to determine the within-
cluster odds ratio that will yield a desired marginal odds ratio.     
 
 
D-7.2 IMPLICATIONS FOR POWER ANALYSIS 
 

In the simple (nonclustered) setting, power analysis for binomial data is relatively 
straightforward (see SRS results described above).  The complication is that once we start 
considering clustering, then individual response rates vary by cluster, as well as by X, with 
respect to their response probabilities.   The simple argument used above for the binomial setting 
no longer applies.  Indeed, it is impossible to simultaneously force all the desired conditions 
(specified intra-class correlation, specified odds ratio, specified response rate among unexposed 
subjects) to hold.  Depending on how the true underlying model is specified (logistic normal, 
beta-binomial etc), power has to be considered for settings where either response rates vary by 
cluster or odds ratios vary by cluster.   
 

One approach is to base power calculations on asymptotic considerations, based on either 
a logistic normal or a beta-binomial model.  Another approach is to use simulation.  An 
advantage of the latter is that data can be simulated under more general settings (e.g., allowing 
for dropout, etc.).  In particular, data can be generated from a parametric model (such as the beta-
binomial), but then analyzed in the simulations using a GEE-based method.  This is the general 
approach we have taken in the power analyses presented in this report.   
 
D-7.3 SIMULATING CORRELATED BINARY DATA 
 

As indicated above, the very same factors that complicate the analysis of correlated 
binary data make their simulation difficult as well.  A number of authors have suggested 
simulation methods (see Qoqish, 2003; Lee, 1993).  In practice, a popular choice is to use the 
logistic normal model to generate correlated binary data.  The major advantage of this approach 
is that it is simple – one simply generates a normal random variable for each cluster, adds it to 
the logistic regression equation as in (2), then generates random bernoulli random variables with 
the corresponding probabilities.  The disadvantage, as indicated above, is that the model 
parameters (β0, β1 and σ2) are not easily matched to marginal response rates for exposed and 
unexposed individuals.  In the case of a dichotomous exposure, a commonly used approach is to 
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start out by specifying P0 and P1, the average response rates among exposed and unexposed 
individuals, then, given the value of σ2 , determine the corresponding values of β0 and β1 by 
inverting Equations D-33 and D-34.  Unfortunately, this inversion involves numerically solving 
an integral that is not in closed form.    
 

On the other hand, correlated binary data are relatively easy to simulate from the beta-
binomial distribution in the context where the covariate (exposure) is measured at the cluster 
level.  The first step is to generate cluster-specific response rates (pi) from a beta distribution 
whose parameters have been chosen so as to ensure the desired marginal means and covariances.   
To be precise, consider a beta distribution with parameters α0 and α1, so that the corresponding 
mean and variance are:  

 
E(pi) = α0/(α0+α1)  and  Var(pi) = α0α1/[(α0+α1)2(1+α0+α1)].  (D-40) 

 
Then, it is straightforward to show the following with regard to the means, variances and 
covariances of random variables generated from the beta-binomial: 
 

E(Yij)=E[E(Yij|pij)]=E(pij)= α0/(α0+α1)   (D-41) 
 

Var(Yij)=E[Var(Yij|pij)]+ Var[E(Yij|pij)]= α0α1/(α0+α1)2  (D-42) 
 

Corr(Yij,Yij’)=1/(α0+α1+1),         (D-43) 
 

where Yij and Yij’ represent responses from two different individuals in the ith cluster.  Suppose we 
wish to have the following marginal response rates:  
 

Pr(Y=1|X=0) = P0    and    Pr(Y=1|X=1)=P1,        (D-44) 
 
and also want to have an intraclass correlation of ρ.  Then, it is straightforward to invert these 
equations in the following manner.  For unexposed clusters (X=0), we have 
 

α0 = P0*(1/ρ-1) α1= (1-P0)*(1/ρ-1)      (D-45) 
 
while for exposed clusters, we have: 
 

α0 = P1*(1/ρ-1) α1= (1-P1)*(1/ρ-1).          (D-46) 
 
Simulating clustered binary data where the covariate varies within-cluster is more complicated.  
One natural extension proceeds as follows.   Let pi0 be the baseline response rate for unexposed 
subjects in the ith cluster and suppose that we would like to have a correlation of ρ between two 
unexposed individuals from the same cluster.  We need to generate pi0 from a beta distribution 
with parameters α0 and α1, chosen (as above) so that E(pi)=P0, the desired response rate for 
unexposed individuals, and so that Corr(Yij,Yij’)=ρ, where Yij and Yij’ represent responses from two 
different unexposed individuals from the ith cluster.  Now we need to consider the response rate 
for an exposed individual in cluster i.  As described above, we propose to specify pi1 so as to 
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ensure that the odds ratio associated with exposure within the ith cluster is given by ∆c (the ‘c’ 
denotes conditional): 
 

pi1 = ∆c pi0 /[1-pi0 (1-∆c)].      (D-47) 
 
Note that as discussed above, since pi1 is now a nonlinear function of pi0, this formulation loses 
the simple correspondence between the marginal response probabilities, P0 and P1.  In fact, using 
iterated expectation, it follows that 
  

P1 = E[∆cpi0 /[1-pi0(1-∆c)]].        (D-48) 
 
A standard Taylor series argument establishes that this last expression will be approximately, but 
not exactly, equal to ∆mP0 /[1-P0(1-∆m)]]=P1, where ∆m denotes the desired marginal odds ratio.  
In other words, imposing a constant within-cluster odds ratio of ∆c will necessarily imply that the 
marginal odds ratio between control and exposed subjects, ∆m, will be something slightly 
different from ∆c.  Using a numerical integration procedure, it is straightforward to calculate the 
marginal odds ratio associated with a specified conditional odds ratio.  We have written a 
function in R to do this calculation.   
 
 
D-7.4 DISCUSSION 
 

We have discussed some of the complexities of sample size and power considerations for 
correlated binomial data, especially in the setting where covariates are expected to vary within-
cluster.  We have suggested the use of simulation-based methods for power estimation.  While 
there have been a number of proposals in the recent statistical literature for methods to generate 
correlated binary data, there are advantages and disadvantages to all approaches.  We have used 
the relatively simple approach of a beta-binomial, generating baseline (i.e., in the absence of 
exposure) rates from a beta distribution for each cluster, then generating a conditional odds ratio 
chosen so as to ensure the desired marginal odds ratio associated with exposure.  Our experience 
suggests that considerable care is needed in choosing the appropriate beta parameters to generate 
the baseline response rates.  In particular, it is important to keep in mind that not all correlation 
values between -1 and 1 are possible for binomial data.  We have found that it is better to specify 
a feasible range for the response rates from cluster to cluster, rather than specifying the within-
cluster correlation directly.    
 
 Thus, given a design scenario and a hypothesis of interest, the steps to calculating power 
are as follows: 
 

1. Obtain a realization of the proposed design (i.e., sample 100,000 individuals and 
compute their probability of selection according to the specified design scheme). 

2. Simulate the binary exposure and binary disease variables according to the assumed 
conditions for the hypothesis of interest.  This will depend on the prevalence of the 
exposure, the prevalence of the disease, the amount of within-cluster correlation in 
the Xs and the Ys, and the assumed odds ratio.   
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3. Fit a logistic regression GEE model that accounts for the possible clustering and 
unequal weighting of the observations.  This provides an estimate of the log-odds 
ratio, and its corresponding standard error and statistical significance under the 
design. 

 
These steps are repeated a large number of times to obtain an estimate of the power to detect the 
odds ratio of interest for the selected design characteristics and the selected hypothesis of 
interest.   
 

Finally, we would like to note that the use of the beta-binomial distribution to generate 
data works well for the setting that we have considered, namely a dichotomous exposure 
variable.  However, things become more complicated for the setting where exposure is 
considered to be continuous.  In that case, specifying a linear logistic regression relationship for 
the conditional within-cluster odds ratio will necessarily induce a marginal relationship that is no 
longer linear in the logit scale.  This is due to the fact that the marginal odds ratio will 
correspond to the expectation of a nonlinear function of the cluster-specific response rates, as 
well as the conditional odds ratio.   
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